ECE 375: Digital Design II
Class 26Radix-4 Multiplication (Signed) with Booth Encodings
a = 0110 = 6
x = 1010 = -6
y = -11-10 // Booth Encoded X
a = 00110
2a = 01100
-a = 11010
-2a = 10100
a = 0110 = 6
x = 1010 = -6
y = -11-10 // Booth Encoded X
a = 00110
2a = 01100
-a = 11010
-2a = 10100
$P^{j+1}=[p^j+x_ja4^2]4^{-1}$
$Z_4$ | -1 | -2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
$P^0$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$Z_0a4^2$ | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
$4P^1$ | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
$P^1$ | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
$Z_1a4^2$ | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
$4P^2$ | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
$P^2$ | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
$P^2 = 1101,11002 = -36{10}$
Radix-4 Booth Recoding Hardware Design
You need 2 symbols for binary, 3 for Booth, and 5 for Radix-4. So how do we store this?
$X_{i+1}$ | $X_i$ | $X_{i-1}$ | $Y_{i+1}$ | $Y_i$ | $Z_i$ |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | -1 | 1 |
0 | 1 | 1 | 1 | 0 | 2 |
1 | 0 | 0 | -1 | 0 | -2 |
1 | 0 | 1 | -1 | 1 | -1 |
1 | 1 | 0 | 0 | -1 | -1 |
1 | 1 | 1 | 0 | 0 | 0 |